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A Debye-Hiickel-type theory is described for an assembly of completely fonized atoms, the nuclel being
treated classically and the electrons by the Thomas-Fermi method. The thermodynamic functions are de-
rived by considering the Debye charging process, and the virial theorem is shown to hold. Numcrical results
are given for hydrogen and iron near normal solid densities, and are probably accurate only at high tempera-
tures (kT>$ ev for hydrogen and 27°>100 ev for iron). At these temperatures, the results do not differ
greatly from those of the ordinary Thomas-Fermi theory of the atom except for the additional contributions

of the nuclei.

1. INTRODUCTION

FTYHE temperature-dependent Thomas-Fermi (TF)?
A and Thomas-Fermi-Dirac (TFD)? theories of the
atom have been recently discussed in detail, and used to
calculate cquations of state of the elements at high
temperatures and pressures. These theories involve a
number of approximations, among which are the
following. (1) The properties of bulk material are
approximated by those of wn isolated, spherically
symmetric atom whose nucleus is at rest. There are
thus no contributions due to nuclear motion nor to
interactions between neighboring atoms. (2) The
electrons are assumed to be quasi-free, and their dis-
tribution about the nucleus is calculated statistically,
so that the shell structure of the atom is in no way
reproduced. The electron density at the nucleus turns
out to be infinite, resulting in absolute binding energies
which are considerably too great in magnitude. (3)
The electrons are treated in the one-electron approxi-
mation, so that there are no correlations in the motions
of the electrons due to their mutual electrostatic re-
pulsion, though in the TFD theory some correlation
among electrons of parallel spin results from effects of
the Pauli exclusion principle.

The Debye-Hiickel, Thomas-Fermi (DHTF) theory
developed recently by Plock and Kirkwood?® removes
to some extent several of the above approximations.
Matter is treated in bulk with associated nuclear effects
and interactions between atoms, and electrostatic
correlations among the electrons are present. Exchange
effects are not included. These can be incorporated in a
manner similar to that of the TFD theory [the prin-
cipal change in the equations given below is to replace
20°21 () by the function Gy(0n, 6) defined in reference
27; however, this would introduce fairly serious nu-
merical complications and would probably not greatly

* Work performed under the auspices of the U. S. Atomic Energy
Comisssion.
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change the calculated results since at low densities,
the correlation effects include most or all of the ex-
change energy.*

2. THEORY

We consider an infinite assembly of atoms (of one
element) at uniform temperature and density, such
i particles (both nuclel and electrons) are free
to move about under the influence of their mutual
electrostatic forces. In order to be able to evaluate
the thermodynamic functions for this system by con-
sidering the Debye charging process, we suppose each
particle o carry an arbitrary fraction X of its true
physical charge, the charge on each particle thus being
Me¢ and —N\e for nuclei and electrons, respectively.
The average densities of nuclel and electrons will be
denoted by 740 and 2 for an electrically neutral
system

that <

Zig=1n_g. (1)

a. Particle Distributions about a Nucleus

Singling out one particular nucleus, let the average
electrostatic potential (resulting from !l particles,
including the nucleus in questicn) and the average
charge density about this nucleus be respectively
Y+ (r) and

pi(r) =Neni(r) —hen_ (), )

where 7., and n_, are the average densities of nucld
and electrons at a distance r from the given nucleus.
The potential and charge density are related through
the Poisson equation

Ay = —dmp,. = —4dmhe(Zins—n_L), (3)
the boundary conditions being
lim .y (7) =2 Ze,
70
limy,.(7) =0. )
T-x0

4R. D. Cowan and J. G. Kirkwood, Phys. Rev. (to be pub-
ished).
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QUANTUM STATISTICAL THEORY OF PLASMAS AND METALS

We shall assume that the nuclei can be treated
classically, so that

=119 exp(—NZep/RT). (3)

The electrons must, however, be described by Iermi-
Dirac statistics. In the Thomas-Fermi approximation,
_we have®

E oy 2
’-l——%_ o 14 expl (p*/2m—Nepe—u) /kT]

= e QAT ), (©

where
La=[ ey, )
1+= (\epps~+p) /kT, (8)

and the free-electron.chemical potential u is such that
n_o=4x (2mkTh™2)};(ns), 9)
no=w/kT. (10)

For purposes of numerical calculation, it is con-
venient to introduce the following units of length and
energy?®

I Or \} 0.468479X 10~ 8cm

= 47.'2)71)\28'"’<128Z) ==z U

and \ .
fu=32mNe 2= 22.0532Mev, (12)

and also the quantities

s=r/n, 0=hT/6, (13)
de= (6/x22%) 4= 0.84713084274, (14)
=07 (4e) (/) (15)

. _ B
Combining all the above, the Poisson equation (3)
reduces to

o' (x) = 3 (4e) {13 (n4) — Iy (n,) exp[—Z(ny—1s) 1},

(16)
with boundary conditions
b+ (0) = 1:
lim g (2) = 2(8/2) = 20 (17)

For given temperature, bulk density of material,
and value of A, the procedure is as follows: n_o can be
readily calculated from the bulk density, ¢ found from
(13), Iy(n,) from (9), and 7, from the tables and
asymptotic expansions for /; given by McDougall and

#See, for example, Feynman, Metropolis, and Teller, Phys.
Rev. 73, 1561 (1949), Sec. V.

“These are the usual Thomas-Fermi units except that e has
teen replaced by Ae.
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Stoner.” The differential equation (16) can then be
integrated to give ¢ (), and hence 94 (x) from (13).
The distribution of particles about a given nucleus
then follows from (6) and the equivalent of (3)

N4 = 1040 €Xp[ — Z (n1—7,,) J. (18)
The net charge surrounding the given nucleus is
G=4wn® f (ANZenjq— Nen_) x*dx. (19)
0

Using (6), (18), and the differential equation (16),
this can be written

=°)

go=—Ne| ¢y wdx
0

= —NZe[xgp' — o "= —NZe, (20)

from the boundary conditions (17). Thus ¢ is, as it
should be, the negative of the charge on the given
nucleus.

b. Particle Distributions about an Electron

Singling out a specific electron, let the average
electrostatic potential (due to all charges, including the
electron in question) and the average charge density
about this electron be, respectively, ¢ (r) and

p(r) =NZeiry_(r) —Nenn_ _(7). (21)

These quantities are related through the Poisson
equation '

AYy_=—dgp_=—dme(Zin——n__), (22)
with boundary conditions

limrp_(r)=—2Ne
0

limy_(r)=0. (23)
700

Tor a neutral plasma, it follows from symmetry
considerations that the distribution of positive charge
about an electron must be identical in form to the
distribution of negative charge about a nucleus. Thus
from (6),

ty_=Z = b 2k Ty (ny).  (24)
Letting '
1-= (\ey—t+p) [k T=\ep_/k T+, (23)
then analogously to (6)
ne _=4x(2mkTh=)i (q_). (26)
Introducing a function ¢_(x) defined by
1-=0""(4e) *(9-/x), (27)

7 J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London),
237A, 67 (1938).
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the Poisson equation (22) becomes
¢-"(¥) =1 ()’ PalTy(n) —Ly(ns) L, (28)

with boundary conditions
$-(0)=—1/Z,
lim ¢_(x) =x(¢/x) .=, (29)
Fraic~]

With 7;(n4) being a known function of x from the solu-
tion of (16), (28) can readily be integrated to give ¢—
and 7- as functions of x, thereby giving the distribu-
tion of particles about an electron from (24) and (26).

Similarly to the derivation of (20), the net charge
about a given electron is

g—=4dary\ f (NZeny_—N\en.. _)x*dx
. 0 .

= —Ne[xp'—¢_J"=Ne, (30)

which is just the negative of the charge on the electron.

¢. Thermodynamic Functions

An expression for the Helmholtz free energy A (v, 7)
of our system will be derived through the artifice of
the Debye charging process, and we accordingly write

A=A+A,, (31)

where #; is the Helmholtz free energy of the un-
charged (ideal) plasma, and 4. is the contribution
which arises during the charging process.

The contribution of the nuclei to the ideal Helm-
holtz energy A; (per atom) is given by the classical
expression

Asp=—kT{1+In [2rmkT):/ o]}, (32)
and the contribution of the electrons (per atom) is®
Ae=ZkT {n,— 313 (n0) /11 (ne) }- (33)

The portion A, of the Helmholtz energy is the clec-
trical work done in charging up the particles at con-
stant temperature and volume, the particle distribu-
tions at each stage in the charging process being the
equilibrium distributions for the corresponding value
of \. Thus the contribution of each nucleus to A, is

Ze N AZ
do= m{mn x)—%]«z(m)

o ]os.

8 See, for example, A. H. Wilson, Thermodynamics and Slalis-
tical Mechanics 2Cumbri(lgc University Press, London, 1957),
Sec. 6.3.
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‘and the contribution of Z clectrons to A, is

4 —Zf _chm[x//_(r, A)—}-—Jd( N

r—0

- [ err-(8)Joo0.

where the quantities NZe/r and —\e/r have been sub-
tracted from .. and ¢, respectively, in order to remove
the self-energies of the particles, and where ¢.(x)
have been expanded in Taylor series about the origin
(see Sec. 3), and the boundary conditions (17) and
(29) employed. (@e=72/mc* is the first Bohr radius of
hydrogen.)

With the Helmholtz free energy culculated in this
manner, the pressure and the internal energy per
atom can then be obtained from the general relations

P= = (OA/(')v) T
E=A4+TS. (36)

Alternatively, the pressure or the energy can be found
from (36) and the other quantity found from the
virial theorem,? which for Coulombic forces, has the
form

P1J= %Ek-l_%Em (37)

where E, and E, are respectively the kinetic and
rotential energles of the system. The validity of the
virial theorem in the case under consideration can be
established as follows:

The energy of the uncharged gas obtained from (32),
(33), and (36) is entlrely Llnetlc, and it can be readily
shown that pw=3§E; by using in the case of A the
relation (9)

vT%, (1,,) = constant, (38

and also the relation” dI;/dn,,=4/y. Thus it is necessary
to consider only the contribution of A, to the pressure
(p.) and the energy (F.). This lust quantity includes
not only potential energy but also a change in the
kinetic energy brought about by the charging process—
the potential energy of the fully charged system being
the result given by (34) and (33) if the particle dis-
tributions are held fixed at their values for A=119;

5= 2 0~ 3 f 209. @)

9 See, for example, Hirschielder, Curtiss, and Bird, M oleculur
Tlleary of Gases and Liquids ( John Wiley & Sons, Inc., New
York, 1954), Sccs. 3.1b and 6.2h.

10 This result can also be obtained by a straightforward evalua-
tion of the Coulomb integrals for A=1,

£y= Z’f(Z‘)P»f"—"IT‘*‘ -‘.-Z/(—c)p_r“dr.

wh(.rc p+and p_ are defined in Lq'« (2) and (21), and the factors
¥ must be included to avoid counting pair interactions twice.
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We iirst note from (13)-(17) and (27)-(29) that
(for given Z) the solutions ¢.(x) and ¢_(x) do not
depenil on v, T, and X\ independently, but only on the
Lo quantities n,, and 6, or from (38) and (13), only on

| oT% and TA (40)

Thus if »; and 77 are some fixed volume (per atom) and
temperature and if » and T are quantities related to
v, and 7 through a scale fuctor ¢ such that

v=¢%, and T=c71}, (41)

then A, may be written
1
A0, )= K[ X9/ (0) =6 (0) Turad ()

=Kot T 0 =0 (0) Jumiad(R)

where A is the constant before the integral sign in
(34). Differentiation of this expression gives

14, 4 2 . )
((dc )u T - —;A°+;1\[¢+ (0) _¢— (0)]1'1.T:-c

4 2. - '
== A+ K[e+'(0)=¢(0) Jorae (42)
But from (36) and (41),

() (50, #6050
de Jor, \ 69 /)o\dc)s,  \OT Ju\dc)r,

— 6§p¢+4~§ g, (43)

and combining this with (42) and (39) gives
pv=5(4et+TS:)—3E,
=3(L— E,)+3Ep (44)

which completes the proof of (37). (In the singular
case T=0, the proof can Be carried out in a manner
entirely analogous to that which has been given for a
modified DHTF theory.*)

3. NUMERICAL METHODS
The differential equations (16) and (28) were inte-
grated numerically with the aid of IBM Type 704
digital computers, using numerical methods similar to
those employed elsewhere.®

a. Integration of the Equation for ¢,

For small x, it may be seen from (15) and (17) that
7.5>1, so that the second term in (16) is negligible
compared with the first, the differential equation thus
reducing to that for the temperature-dependent TF
«tom. The solution can, therefore, be written in series
form:

¢+ (2) =D cws, (43)

the values of the first few coefficients being™

a0=1, a= O,

23

&

a=¢4'(0)=arbitrary,
a;= 2(2-_:/5,

a;=3a*/T0+0(1?).

(1.;=0,
a5=l‘.‘f;

For 27, the ¢; contain temperature-dependent terms,
which however are of no importance provided (43)
is used only o sufliciently small values of .

Using an estimated value of s, integration of (16)
was started with the aid of (43), and then continued
by a difference method. Because of the boundary con-
dition (17), at large x Eq. (16) can be written with the
ald of Taylor series expansions and Eq. (13) in the
form

¢+ (%) =K [ pr—%(4/%)]
¢+(%) =2(p/%) o+ A75+7, (46)

or

whers
K 2=6i[dly(n) /dn+ZL(n) Tp,.  (47)

At some large x, then, the constant A was evaluated
so as to match (46) to the numerical solution, and the
slopes of the two solutions were then compared. The
value of ¢, was then modilied, and an iterative pro-
cedure carried out until the two slopes were equal to
the desired accuracy.

It may easily be seen that this solution of (16)-(17)
is a unique one (barring solutions with singularities
at finite ) : for any integral of (16), the curvature is
positive for ny.>7n,, and negative for 9.<n; if ¢
and ¢, are two integrals satisfying the boundary condi-
tlons at the origin with ¢,"(0) >¢:'(0), then for all =,
o1(%) >¢a(x), & (2)>¢'(v), and ¢"(x)>¢" ().
The solution (which satisfies both boundary condi-
tions) has the properties ¢4 (x) >x0., ¢+ (%) <o,
and ¢.”(x) >0 for all x.

As a check on the integration of the differential
equation, the results were used for a numerical evalua-
tion of the integrul (19); the value of ¢ thus obtained
was generally equal to —MZe within one-uwentieth
percent, except at large Z and low ¢ where the function
(18) changes very rapidly with x.

b. Integration of the Equation for ¢..

With %4+ being a known function from the solution of
(16)-(17), the integration of (28) can be carried out
in a similar manner. At small x, <0 from (27) and
(29), and (28) reduces to

¢-" () = =§($)*05 L3 (ns) (48)

which is identical with the small-x form of (16) except

1 Reference 5, Sec. II.
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for the change in sign. The solution can therefore be

written ~
¢ (%) =2 b, (49)
where
be=—1/2,
0=0,
by=¢_'(0) = arbitrary,
bi=—aq 12 3.
At large x, (28) can be written
0-" () =K *(¢-—¢1),
the solution to which is
O-(3) =2(9/x) o= KH(K2— K1)~ Ae st Bes=,

(50)
where
K_2=6e'[dI, (n) /dn T . (51)

The value of b was iterated ¢ until (50) matched the
numerical solution both as to value and slope at some
suitably large x. .

The uniqueness of the solution can again be seen
from a qualitative examination of the differential
equation, though the situation is somewhat more
complicated than before in that two qualitatively
different forms of the solution are possible: (1) ¢_(x) <
10y, ¢ (%) > ¢, and ¢ (x) <0 for all x; (2) ¢_(x)
not only crosses the line x¢,’, but also crosses the curve
¢+(x) at some point x; with a slope such that ¢/ () <
o (x1) <¢.', with ¢_"(x) <0 for x<wx; and ¢_"(x) >0
for x> For Z=1, only the first type solution has
been observed; for Z=2, either type may occur,
depending on the density and temperature; and for
somewhat larger Z, only the second type has been
found. The reason for this will be discussed in Sec. 4b.

In all cases, the numerical results checked Eq. (30)
with about the same accuracy as for Eq. (19).
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T1c. 1. Variation of pressure with temperature according to the
DHTE and TL theorics of the atom for deuterium at normal liquid
density, p=0.17 g/cc (or for hydrogen at p=0.085 g/cc). ps is
the pressurc of a mixture of uncharged (Boltzmann) nuclei and
(quantum-degencrate) clectrons.
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F1c. 2. Variation of pressure with temperature for iron at ten
times normal density (p=78.5 g/cc).

c¢. Evaluation of the Thermodynamic Functions

As pointed out earlier, the integrands of the expres-
sions (34) and (35) for A, can be considered as func-
tions of only the two parameters 97% and 72, How-
ever, 4. was actually computed by the more time-
consuming but more straightforward procedure® of
integrating the differential equations for the desired
v and 7 and for each of twelve values of A2, and evalu-
ating the A? integrals with the aid of Simpson’s rule.

In order to evaluate p and /2, ..lculations were not
actually done at the v=p~* and 7 of interest but rather
at [(1==0.1)p, T] and at [p, (12£0.1) 7], and pand S
calculated from (36) by numerical differentiation in a

“linear approximation. The associated error is roughly

one percent, compared with which the errors in Simp-
son’s rule and in integrating the differential equations
are negligible.

In a few cases, the pressure was also evaluated from
the virial theorem (37). In each case, the result agreed
with that obtained from (36) within the one percent
uncertainty in the latter.

4, RESULTS
a. Pressure

Some numerical results for the pressure are shown
o Tigs. 1-4, which include for comparison curves
showing the pressure of the uncharged ideal gas®

pw=—v(d4:/3v) r
=kT+3ZkTT;(n.) /15(n..) (32)

(where v is volume per atom), and also curves showing
the electronic pressure as calculated from the TT theory
of the atom.!

It may be seen, especially from Tig. 1, that at high
temperatures, the value of pv/&7 for the DHTF theory
is greater than that for the TF theory by approxi-
mately unity, as is to be expected since the one theory
includes the nuclear contribuiiun to the pressure
whereas the other does not.

12 This procedure is almost essential to insure consistent values
of 4 ;for use in evaluating the derivatives (0.4 /dv) and (04 ./07).

s e
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kT (ev)

F1c. 3. Variation of pressure with temperature for iron at normal
solid density (p=7.85 g/cc).

At low temperatures and densities, the DHTT curves
differ qualitatively from the corresponding TF curves,
the former possessing distinct plateaus in Iigs. 3 and 4.
This effect is strongly Z- and( density-) dependent, as
confirmed by numerical results (not shown here) for
Z=6 and 92. Tt is not immediately obvious whether
the large DHTT pressure calculated in the platean
region should be considered physically meaninziul.
One might conjecture that this reflects ionization
resulting from collisions of neighboring atoms due
to the thermal motion of the nuclei, which is absent
in the TY picture. However, for reasons which will be
discussed, the authors feel that these large pressures
may be spurious (at least in part) and that the DHTT
results should not be given too much weight at low
temperatures and densities.

At sufficiently low densities, the zero-temperature
pressure becomes negative (Figs. 1 and 4), unlike the
TF theory where p becomes zero only in the limit of
zero density. This is probably related to the lowering of
energy due to electron correlation, which is not present
in the TF theory. The DHTT pressure seems to become
zero at a slightly higher density than in the TFD
theory; this is reasonable since at the low electron
densities at which correlation effects are important,
the correlation energy in the present theory is greater
than the exchange energy of the TFD theory (sec
reference 4 and Sec. 4c following).

The high-temperature regions in which the DHTT
results may be considered reliable are pertinent to the
following two problems, among others.

2
e e e Ty

pv/kT

10° 10' 10% 10°
kT (ev)

F16. 4. Variation of pressure with temperature for iron at one-tenth
normal density (p=0.785 g/cc).

L N T SNSRI WY A ST

D

o 02 04 06 08 1.0
/1,

Fic. 5. The radial distribution functions for iron at normal density,
A=1, and £7'=100 ev.

S

(1) Current efforts at achieving thermonuclear reac-
tions are aimed at producing temperatures well above
100 volts in deuterium at gascous densities. Since both
high temperature and low density reduce the im-
portance of eclectrostatic interactions between the
nuclei and electrons, it is evident from Iig. 1 that
electrostatic effects are completely negligible under the
above conditions.

(2) In the carly years of the Debye-Hiickel theory,
several attempts were made to apply the theory
(primarily in its linearized form and using Boltzmann
statistics for all particles) to the problem of ionized
material in stellar interiors. Thus for iron at a density of
156 g/cc and a temperature of 26.36X10°K (¢T=
2271 ev), Fowler and Guggenheim® calculated the
electrostatic effects to reduce the pressure by 21.9%,
while Eddington* corrected the theory in some respects

100 —_— - - :
r by N, :
i o
g E
o r————
Fon__ e 1
E 5 P E
— Yeo - -
r /// Nys ]
/ oo =
( ’
’
Q. T PO S S S gam
0 0.2 0.4 0.6 0.8 1.0 L2 1.4
/ry

F16. 6. The radial distribution functions for iron at normal den-
sity, A\=1, and 27=1000 ev. The n_ _ curve lies above the n. .
curve for 7/7>0.892.

13 R. H. Fowler and E. A. Guggenheim, Monthly Notices Roy.
Astron. Soc. 83, 939 (1925).

14 A S. Eddington, Monthly Notices Roy. Astron. Soc. 86,
2 (1926).
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o
=*
5, E
&
kTsl0ev Ny
—==—kT=100 i
———=kT=1000
1 1 L 1 - | 1
1.0 L2 14 1.6

v/,

Tic. 7. The distribution of nuclei about a given nucleus for iron
at ten times normal density and A=1.

and found an effect of only 6.89. The present DHTT
theory gives for iron under these conditions pv/kT=
24.0, and thus a pressure only 49 less than the perfect-
gas value for the 24-fold ionized atoms assumed by
Eddington.

b. Radial Distribution Functions

In Figs. 5 and 6 are shown the radial distribution
functions (3), (24), and (26) for iron at normal
density, A=1, and £7=100 and 1000 ev.

Tor small 7, the density of electrons about a nucleus
(1n_.) becomes infinite as 73, just as in the Thomas-
Fermi theory of the atom. As a result of the high
electron density near a nucleus (of not too low Z), th
distribution of electrons about a typical electron
(#__) shows a maximum for relatively small », and
at some larger 7, »__ even becomes greater than
ns_. This behavior is particularly pronounced for low
temperature and density and for high Z. For Z=1,
no maximum in #_ _ has been observed; this is to be

1O =TT T T =
—
’f
= -
,/
0.8 ya o
7
006 -
>
& -
+
g
< 04 B
— kT=l0ev
—ee Kk T=100 T
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Fic. 8. The distribution of nuclei about a given nucleus for iron
4 at normal solid density and A=1.
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F1c. 9. The distribution of nuclei about a given nucleus for iron
at one-tenth normal density and A=1.

expected since in this case, there is only one electron
per nucleus and consequently no strong bunching of
several electrons about each nucleus.

The distribution of nuclel about a given nucleus
(744) is shown in greater detail in Figs. 7 to 9, which
correspond to the cases pictured in Figs. 2 to 4, re-
spectively. Ior a given density, the effect of an increase
in temperature is qualitatively what one would expect—
an increase in #.. at small » and a decrease at large 7.
However, at low density (Fig. 9), the effect is quan-
titatively abnormal; on the scale of the figure, the
only perceptible change in 7, on increasing 27 from
10 to 100 ev is a decrease everywhere. This behavior is
maore pronounced the lower the density and the higher
the value of Z. It Is closely related to the fact that in
the zero-temperature limit, »n,., tends to a step func-
tion with the step at a radius 7; which is less than 7,
this last being the radius of a sphere whose volume
is the average volume per atom (dzr®/3=1n407Y).

The reason why r is less than 7 is easily seen. At
zero temperature, the normalization condition (19),
(20) reduces to

e
Z=d4g f n_ridr.
0

kT (ev)

Fi6. 10. Temperature dependence of ¢ : for iron at normal
density (p=7.85 g/cc). The dotted curve is for a mixture of nuclei
and clectrons without clectrostatic interactions.
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QUANTUM STATISTICAL THEORY OF PLASMAS

Tapre I. Atomic binding energy, E(T=0, p=0), ev/atom.

Z TF® TFD® DHTF
1 ‘ —20.91 —28.07 —26.3
6 —1368 —1492 —1475
26 —-+1885 —43280 —43590
" 10 —799150 —3810500 —824000

A Reference 2.

Since n_y is everywhere greater than the average value
jig, it follows that the volume inside r; must be less
than the average volume per atom and hence 7,<7.
Indeed, at T'=0, the differential equation (16) and
boundary conditions (17) reduce precisely to the
Thomas-Fermi equations for an atom of radius 7.5
In the case of iron with 7y corresponding to ten times
normal density, the TTF pressure for an atom of radius
n is about five times that for radius 7,.! The fact that
the DHTFE pressure is only forty percent greater
than the TT value (low-temperature portion of Fig. 2)
shows that the DHTT theory compensates in large
degree for the small value of ;. Nonetheless, it is felt
that the DHTT results should be viewed with reserva-
tions up to temperatures at which the distribution
function #..(r) begins to exhibit some semblance of
symmetry about the point r=7,.

c. Energy

In Fig. 10, the energy difference E(T, p)— E(T=0,
p) (where pg is the normal density of the material) is
plotted against " for normal density iron, for both the
DHTF and TF theories. The curves are similar to those
of Fig. 3 for the pressure—at high temperatures the
DHTEF curve lies close to the TF one, but at low
temperatures, the DHTT curve may lie as much as a
factor two above the other.

Rough values of the binding energy of some atoms
are given in Table I. It may be scen that (except at
low Z) the DIITIE theory gives even greater values for
| E(T=0, pp=o) | than does the TFD theory. This may
be partly due to the correlation energy, which at low
densities is greater (in magnitude) than the exchange
energy of the TI'D theory?; probably it is also partly
the result of the contraction of the electrons around a
nucleus (the fact that 7 <r, discussed above).
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It may be noted that whereas the TEFD theory gives
greater binding and lower specific heat than the TF
theory,? the DHTF theory gives about the same or
even greater binding than the TI'D theory but ap-
parently a higher specific heat than the TF theory.

5. DISCUSSION

It should perhaps be pointed out that the DHTF
theory as presented in Sec. 2 is inconsistent in that the
electron correlation energy is not included in the
exponent of the energy-distribution functions used in
calculating the electron densities, Egs. (6), (24), and
(26).

The theory is also thermodynamically inconsistent
in the manner of all nonlinearized Debye-Hiickel
theories.®® This inconsistency is the result of approxi-
mating the interaction energy W,z between two charged
particles @ and 8 by the expression,

Wes=2qsu(r),

for use in (5), (6), and (26). As defined earlier, the
potential v, is the potential a distance r from the
particle « averaged over all configurations of all par-
ticles other than «, including the particle 8. The correct
value of Wz is, however, the work required to bring 8
from infinity to 7, the force involved at each stage in
this process being that obtained by averaging over all
configurations of pdrtxc]ea other than « and B The
approximation (53) is therefore best when ¢z is small,
the density of other charged particles is high, and the

-temperature is high; for then g makes a negligible

contribution to Y., and in bringing 8 up from infinity to
evaluate W the position of 8 will have only a negligible
effect on the configuration of the ol - charges.!® This,
too, throws doubt on the physical significance of the
plateaus in Figs. 3 and 4, which appear at large Z, low
density, and low temperature.

R, IL Fowler and I. A. Guggenheim, Stalislical Thermody-
namics (Cambridge University Press, Lon(l(m, 1956), Chap. IX
(L<pcc1ally §923).

% In the limit of very low densities of charged p.xmdes, then
for not too large » the potential ¥, () becomes just the Coulomb
potential of the charge a. Equation (33) again becomes a good ap-
proximation, resulting in the well-known vilidity of the Dcuvc-
Hiickel theory in the limit of very low elcctrolyte concentrations.
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